¿Qué es la relación de Sharpe? ¡Aprenda como usarlo!

índice de nitidez

Conocido como uno de los indicadores más importantes para evaluar inversiones en el mercado financiero, el índice de Sharpe es tanto más relevante cuanto que tiene en cuenta tanto la rentabilidad que estas inversiones pueden traer como el riesgo que usted, que invierte en estos activos, puede tomar .

Es maravilloso, ¿no? Un índice capaz de ayudarte a elegir los mejores activos teniendo en cuenta todos los riesgos. La idea es realmente genial y por eso estamos aquí para contarte cómo puedes aprovechar sus ventajas para empezar a hacer análisis cada vez más precisos cuando inviertes hoy.

Después de todo, sea cual sea su objetivo, una cosa es cierta: es importante tener indicadores que puedan mostrar si está utilizando la estrategia correcta o si necesita cambiar de rumbo.

¡Acompáñanos a entender este concepto!

¿Qué es la relación de Sharpe?

El índice toma su nombre del hecho de que fue creado por William Sharpe, ganador del Premio Nobel de economía en 1990. Matemático y estadístico, no vio ningún sentido en centrarse únicamente en la rentabilidad de las inversiones financieras.

En sus análisis, comenzó a preguntarse qué inversiones eran las más rentables, pero también las menos riesgosas. Es en esta perspectiva que los inversores han comenzado a analizar las aplicaciones de manera más completa, haciendo comparaciones más asertivas.

En efecto, quien invierte en bolsa debe ser consciente de que las rentabilidades pasadas nunca son garantía de rentabilidades futuras y que la rentabilidad esperada debe equilibrarse con los riesgos asumidos.

¿Para qué se utiliza la relación de Sharpe?

Teniendo en cuenta todo lo que hemos mencionado hasta ahora, este índice es sumamente útil, ya que al comparar dos fondos de inversión con el mismo rendimiento, por ejemplo, es capaz de identificar el que ofrece menos riesgo y, por lo tanto, siempre será el mejor. elección.

Después de todo, solo porque generó un alto rendimiento no hace que un activo sea mejor que los demás, ya que pudo generar más rendimiento precisamente porque asumió más riesgo. Así, utilizando el ratio de Sharpe, quien invierte encuentra la alternativa con la mejor rentabilidad y el menor riesgo posible. Pero, ¿cómo usar?

Cómo calcular la relación de Sharpe

Coge el cuaderno porque como el concepto viene de las matemáticas, partimos de la siguiente fórmula:

S = (Ri – Rf) ÷ (σi)

La leyenda de la fórmula anterior es la siguiente:

  • S = relación de Sharpe
  • Ri = retorno de la inversión en análisis
  • Rf = tasa libre de riesgo, que sirve como punto de referencia para el cálculo. En el caso de Brasil se utiliza la tasa Selic, ya que representa las inversiones más básicas y con menor riesgo de mercado.
  • σi = riesgo de inversión, representado por la letra griega sigma, que simboliza la volatilidad

¿Complejo? A simple vista lo parece, pero no lo es.

Vamos: supongamos que desea valorar el activo "A", cuya tasa libre de riesgo es del 10%, el rendimiento del activo es del 15% y la volatilidad anual es del 10%. Entonces tenemos:

S = (15 - 10) ÷ (10)S = 5 ÷ 10S = 0,5

Este resultado muestra que cada 1 punto de riesgo asumido con el activo "A" generó un rendimiento de 0,5 puntos de compensación por encima de lo que se recibió en una inversión sin riesgo. Por lo tanto, el rendimiento aumentó porque el riesgo también era alto.

Ahora imagine que ha decidido analizar el activo "B", que tiene una tasa libre de riesgo del 10%, un rendimiento del 15% y una volatilidad del 50%. Tenga en cuenta que Ri y Rf siguen siendo los mismos que para el activo "A", solo cambia la volatilidad. Pronto:

S = (15 - 10) ÷ (50)S = 5 ÷ 50S = 0,1

En el análisis del activo “B”, encontramos que cada punto de riesgo incurrido generó un retorno 0.1 punto de compensación superior al recibido por una inversión libre de riesgo. En esta comparación, el activo "B" es peor para usted porque su rendimiento es más riesgoso debido a la volatilidad.

Si ignoraste este indicador, podrías pensar que ambos activos traerán la misma remuneración y terminarás eligiendo el que tiene un rendimiento más riesgoso, solo para no hacer un cálculo tan simple.

Para dejar las cosas aún más claras, podemos definir que cuanto mayor sea el resultado de una determinada inversión, mejor será su retorno por unidad de riesgo. Entonces 0.5 es mejor que 0.1.

En general, también podemos decir que el resultado por encima de 0,5 es positivo y vale la pena considerar la inversión. Sin embargo, lo ideal siempre es hacer comparaciones más completas antes de tomar cualquier decisión.

¿Te ayudó este artículo? ¿Qué tal compartir el enlace con tu red de contactos interesados ​​en inversiones para que más personas conozcan la importancia de este concepto? Si aún tienes dudas, ¡únete a nuestra comunidad y cuenta con la respuesta de expertos en la materia!

.

0/5 (0 Reviews)

También te puede interesar:

Subir

En modelosydeclaraciones.com usamos cookies para asegurarte una mayor experiencia de navegación. +Info